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Introduction Algorithmics Flow Trees

Lecture objectives

Understanding the benefits of operational research

Master the useful basics of graph theory

Be able to model a concrete algorithm, from an
abstract problem

. . . And know how to solve it!
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Introduction Algorithmics Flow Trees

Plan du cours

1 Introduction: some definitions

2 Graph algorithms

3 Flow problems

4 The trees

Damien Leprovost Graph Theory in Operational Research 3



Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Outline

1 Introduction: some definitions

Operational research

Graphs
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Definition of Operational research

Definition

A set of rational methods and techniques for analysis and synthesis
of organizational processes, used to develop better decisions.

Operational research defines neither the criteria, nor
objectives, nor the decisions!
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Origines

World War II (Staff of the British Navy)

Patrick Blackett, physicist (1940)

Application to military operations:
supply paths, location of radars, . . .

In fact much older

Expected value, of Blaise Pascal and Pierre de Fermat (1654)

Décision dans l’incertain (Decision under uncertainty) of
Jacques Bernoulli (1713)
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Application domain

Domains where common sense is deficient.

Especially:

combinatorial problems;

random;

competitive situations.
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Outline

1 Introduction: some definitions

Operational research

Graphs
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Definition of graphs

A graph is first of all:

a set of elements;

a set of relations between these elements.

Two families:

undirected graphs;

directed graphs.

Many possible conceptualizations and models
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Seven Bridges of Königsberg (Euler, 1735)

⇔

A

B C

D

Representation as a graph:

A

B C

D

⇔ G =

A B C D

A − 2 1 −
B 2 − 1 2

C 1 1 − 1

D − 2 1 −
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Vocabulary of directed graphs

•
A

•
B

•
C

•
D

•
E

Set of vertices X = {A, B, C , D, E}

Arcs : ordered pairs of vertices, subset of X

U ⊂ X ×X , binary relation of X

U = {(A, B), (A, C ), (B, D), (B, E), (C , E), (DC )}

G = (X , U ) is a possible notations of G
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Vocabulary of directed graphs

•
A

•
B

•
C

•
D

•
E

Map Γ+, as successor map, defined on X .

Γ+(A) = {B, C} ; A is a graph input

Γ+(E) = ∅ ; E is a graph output

G = (X , Γ+) et G = (X , Γ−) are two possible notations of G
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Vocabulary of undirected graphs

•
A

•
B

•
C

•
D

•
E

Unordered pairs of vertices, called egdes

[A, B]⇔ [B, A]

At any directed graph corresponds a single undirected graph

“Disorientation” :
U = {(A, C ), (B, D), (D, B)} ⇒ U = {[A, C ], [B, D]}
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Vocabulary of graphs

•
A

•
B

•
C

•
D

•
E

Walk: sequence of vertices and edges

Called closed walk if its first and last vertices are the same
Traditionnally, open walks are refered as paths

Trail: a walk in which all the edges are distinct

Chain: a walk in which all the vertices are distinct

A closed chain is a cycle

A 1-length path is a loop

A graphe is connected when there is a path between every
pair of vertices
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Vocabulary of graphs

Special trails:

A trail is called Eulerian if it uses all edges precisely once

A graph with one Eulerian trail is Eulerian, and traversable

It is Hamiltonian if it uses all vertices precisely once

A graph with one Hamiltonian trail is Hamiltonian
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Vocabulary of graphs

•
A

•
B

•
C

•
D

•
E

Outdegree of x : d+
x = card Γ+(x)

Indegree of x : d−

x = card Γ−(x)

Degree de x : number of edges having a extremity on x
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Matrix representation

•
A

•
B

•
C

•
D

•
E

Definition of an adjancency matrix

M =

A B C D E

A 1 1 1 0 0

B 0 0 0 1 1

C 0 0 0 0 1

D 0 0 1 0 0

E 0 0 0 0 0

⇒

Γ+(A) = {A, B, C}
Γ+(B) = {D, E}
Γ+(C ) = {E}
Γ+(D) = {C}
Γ+(E) = {∅}

Example of use: determining degrees
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Matrix representation

•
A

•
B

•
C

•
D

•
E

Other example: M k = cardinality of unique paths with a
length of k

M =

A B C D E

A 1 1 1 0 0

B 0 0 0 1 1

C 0 0 0 0 1

D 0 0 1 0 0

E 0 0 0 0 0

M 3 =

A B C D E

A 1 1 2 1 2

B 0 0 0 0 1

C 0 0 0 0 0

D 0 0 0 0 0

E 0 0 0 0 0
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Utility in Operational Research

Represent all kind of situation in organizational phenomena

Modelize, for example:

Transportation network

Using the Kirchhoff’s circuit laws

Relations systems

Using the transitive law

Scheduling problems

Systems of states and transitions

Markov chains and processes

Petri Nets
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Test: Are you Euler?

⇒

A

B C

D

G =

A B C D

A − 2 1 −
B 2 − 1 2

C 1 1 − 1

D − 2 1 −

⇒
Γ(A) = 3

Γ(B) = 5

Γ(C ) = 3

Γ(D) = 3
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Test: Are you Euler?

⇒

A

B C

D

G =

A B C D

A − 2 1 −
B 2 − 1 2

C 1 1 − 1

D − 2 1 −

⇒
Γ(A) = 4

Γ(B) = 5

Γ(C ) = 3

Γ(D) = 4
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Introduction Algorithmics Flow Trees

Operational research Graphs Test: Are you Euler?

Test: Are you Euler?

⇒

A

B C

D

G =

A B C D

A − 2 1 −
B 2 − 1 2

C 1 1 − 1

D − 2 1 −

⇒
Γ(A) = 4

Γ(B) = 6

Γ(C ) = 4

Γ(D) = 4
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Outline

2 Graph algorithms

Definition of an algorithm

Computational Complexity

First algorithms: graph traversal

Dynamic programming
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Definition of an algorithm1

Definition

An algorithm is a finite and unambiguous serie of transactions or
instructions for solving a problem.

Property of Knuth:

Finiteness:“An algorithm must always terminate after a finite number of steps”

Definiteness:“Each step of an algorithm must be precisely defined; the actions to be carried

out must be rigorously and unambiguously specified for each case”

Input:“. . . quantities which are given to it initially before the algorithm begins. These inputs are

taken from specified sets of objects”

Output:“. . . quantities which have a specified relation to the inputs”

Effectiveness:“. . . all of the operations to be performed in the algorithm must be sufficiently

basic that they can in principle be done exactly and in a finite length of time by a man using paper

and pencil”

1After the name of the Persian mathematician Al-Khwârizmî (∼ 780 – 850)
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Outline

2 Graph algorithms

Definition of an algorithm

Computational Complexity

First algorithms: graph traversal

Dynamic programming
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Computational Complexity

Evaluate and compare the effectiveness of algorithms

Two main criteria:

Calculation time

Memory size

Calculation time is always limited!
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

The notation O

O class of function “top-confining”

∃c > 0,∃n0 such that ∀n ≥ n0, g(n) ≤ c · f (n)⇔ g ∈ O(f )

O(1) all functions bounded above by a constant from a
certain rank

O(c · f ) = O(f ) : The complexity is used modulo a
multiplicative constant (asymptotic behavior)

O(100000n2) = O(0, 01n2) = 0(n2)

∀P(n) = a0 + a1n + a2n2 + · · ·+ apnp, P ∈ O(np)
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Execution time of the usual functions2

f (n) = n = 10 n = 100 n = 1000 n = 106 n = 109

logn 10−9 s 2 · 10−9 s 3 · 10−9 s 6 · 10−9 s 9 · 10−9 s

n 10−8 s 10−7 s 10−6 s 10−3 s 1 s

n logn 10−8 s 2 · 10−7 s 3 · 10−6 s 6 · 10−3 s 9 s

n2 10−7 s 10−5 s 10−3 s 1000 s 32 years

n3 10−6 s 10−3 s 1 s 32 years 3 · 104 My

2n 10−6 s 3 · 108 My 10273 My – –

O(1) ⊂ O(log n) ⊂ O(
√

n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂
O(2n) ⊂ O(en) ⊂ O(nn)

2On the basis of one billion operations per second (1Ghz)
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Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Outline

2 Graph algorithms

Definition of an algorithm

Computational Complexity

First algorithms: graph traversal

Dynamic programming
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

Goal: Determining connectivity of a graph, the number of
connected components

Method: Depth-first search (DFS)

Depth-first search

An unmarked vertex is open if and only if it is adjacent to the last
vertex previously open3. If such a vertex does not exist, the last
opened vertex is closed.

Using a stack (abstract data type)

Last In, First Out (LIFO)

3
successor of the last vertex in an oriented graph
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

p = 0

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A

A

p = 1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

A

B
p = 1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p

Damien Leprovost Graph Theory in Operational Research 29



Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

I

A

B

I p = 1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p

Damien Leprovost Graph Theory in Operational Research 29



Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

A

B

H

I p = 1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

A

B

E

H

I p = 1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

EE

A

B

H

I p = 1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

EE

H

A

B

I p = 1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

E

H

A

B

I

L

p = 1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

E

H

L A

B

I p = 1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

E

H

L

I

A

B
p = 1

1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

E

H

L

I

B

A

p = 1

1

1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

FE

H

L

I

B

A

F
p = 1

1

1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

FE

H

L

I

B

F

A

p = 1

1

1
1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

FE

H

L

I

B

F

A

p = 1

1
1

1
1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

F

C

E

H

L

I

B

F

A

C

p = 2

1
1

1
1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

F

C D

E

H

L

I

B

F

A

C

D
p = 2

1
1

1
1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

F

C D

K

E

H

L

I

B

F

A

C

D

K p = 2

1
1

1
1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

F

C D

KJ

E

H

L

I

B

F

A

C

D

J

K p = 2

1
1

1
1

1

1

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Depth-first search: computing connectivity

A B C D

E F G

H I J K

L M N

O

A B

IH

E

L

F

C D

KJ

E

H

L

I

B

F

A

J

C

D

K p = 2

1
1

1
1

1

1 2

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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p = 2

1
1

1
1

1

1 2 2

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity

A B C D
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F

A

J K

C

D

G p = 2

1
1

1
1

1

1 2 2

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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p = 2

1
1

1
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1

1 2 2

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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B

F

A

J K

G
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p = 2

1
1

2

1
1 2

1

1 2 2

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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1
1
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1
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1
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1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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G
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1
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1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity

A B C D

E F G

H I J K
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O

A B
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E

L

F

C D

KJ

G
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L

I

B

F

A

J K

G
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M

N
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1
1
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1
1 2

1

1 2 2

1

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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L M N

O

A B
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A

J K

G
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1
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1
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1
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1

3

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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G
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1
1

2 2

1
1 2

1
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1

3

3

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity
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L
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I

B

F

A

J K

G
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p = 3

1
1
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1
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1

1 2 2
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3

3

1: all vertices are unmarked; p → 0; Stack → ∅

2: while it exists an unmarked vertex s, open and push s; p → p + 1

3: while Stack is not empty, do

4: if it exists an unmarked vertex y adjacent to the top x of Stack, do

5: open and push y;

6: else close and pop x; c(x) = p
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Depth-first search: computing connectivity

A B C D
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H I J K
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O
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H
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G
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1
1
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1
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1

1 2 2

1 3

3

3

The connectivity is determined, each vertex is labeled to a
connected component

Notable properties of Depth-first search :

Stack empty at each new connected component

Any non traveled egde indicates a chain

Damien Leprovost Graph Theory in Operational Research 30



Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Breadth-first search: shortest path

Goal: Determining the shortest path length4 from a vertex s

to others vertices of the graph

Method: Breadth-first search

Breadth-first search

All unmarked successors of curent vertex are open successively.
The next visited vertex at every step, among open vertices, is the
one that was first opened.

Using a queue (abstract data type)

First In, First Out (FIFO)

4Not to be confused with the value of a path of valued arcs
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Breadth-first search: shortest path

A

B

C

D

EF

G

1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path

A

B

C

D

EF

G

A0

A

1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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A D C

1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path

A

B
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D
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G

A

D

C

A0

1

1

D C

1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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D C B F

1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;

Damien Leprovost Graph Theory in Operational Research 32



Introduction Algorithmics Flow Trees

Definition of an algorithm Computational Complexity First algorithms: graph traversal Dynamic programming

Breadth-first search: shortest path
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1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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B F G

1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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1: all vertices are unmarked; Queue → ∅

2: open and enqueue s; d(s) → 0

3: while Queue is no empty, do

4: open and enqueue all unmarked vertices y successors of the queue
head x; d(y) = d(x) + 1;

5: close and dequeue x;
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Breadth-first search: shortest path
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Each vertex is associated with its distance from the starting
point

The starting point determining

One connected component covered

Unmarked vertex at the end of the algorithm : inaccessible
vertex from s
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Outline

2 Graph algorithms

Definition of an algorithm

Computational Complexity

First algorithms: graph traversal

Dynamic programming
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Origines

Attributed to Richard Bellman (∼ 1950)

Based on work of Pierre de Fermat in optics

Implicit enumeration: avoiding some calculations by lowering
the complexity of the problem

Is based on the principle of optimality

Solving problems of optimal paths (min or max)
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Principle of optimality

Definition

Any portion (sub-path) of an optimal path is, itself, optimal.

Easy demonstration by reductio ad impossibilem (Proof by
contradiction)

α1

α2

β1

β2•A • B

• C

Find a recursive formulation of the problem
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Application areas

Combinatorial distribution problems

Ski rental problem (limited elements)

Knapsack problem / Change-making problem (unlimited
elements)

Algorithmic of text

Calculation of the longest common subsequence

similarity computation (Levenshtein distance)

Local sequence alignment (Bioinformatics: Smith–Waterman
algorithm)

All dynamic programming algorithm can be reduced to the search
for the shortest path in a graph (Martelli, 1976)
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Raw example (Bellman algorithm)

•
A

•
B

•
C

•
D

•
E

•
F

3

8

6

2

6

1

1

7

2

Once determined (A, B), shortest path between A and B, and
(A, B, D, C ), shortest path between A and C

The shortest path between A and E is limited to the
comparaison of (A, B, E) and (A, B, D, C , E)

(A, C , E) and (A, D, C , E) are excluded before calculation by
the principle of optimality
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Raw example (Bellman algorithm)

•
A

•
B

•
C

•
D

•
E

•
F

3

8

6

2

6

1

1

7

2

DA(F) = min

(

DA(D) + v(D, F)
DA(E) + v(E , F)

)

DA(E) = min

(

DA(C ) + v(C , E)
DA(B) + v(B, E)

)

DA(D) = min

(

DA(B) + v(B, D)
DA(A) + v(A, D)

)

DA(C ) = min

(

DA(D) + v(D, C )
DA(A) + v(A, C )

)

DA(B) = DA(A) + v(A, B)

DA(A) = 0
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Raw example (Bellman algorithm)

•
A

•
B

•
C

•
D

•
E

•
F

3

8

6

2

6

1

1

7

2

DA(F) = min

(

DA(D) + 7
DA(E) + 2

)

DA(E) = min

(

DA(C ) + 1
DA(B) + 6

)

DA(D) = min

(

DA(B) + 2
DA(A) + 6

)

DA(C ) = min

(

DA(D) + 1
DA(A) + 8

)

DA(B) = DA(A) + 3

DA(A) = 0
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Raw example (Bellman algorithm)

•
A

•
B

•
C

•
D

•
E

•
F

3

8

6

2

6

1

1

7

2

DA(F) = min

(

DA(D) + 7
DA(E) + 2

)

DA(E) = min

(

DA(C ) + 1
DA(B) + 6

)

DA(D) = min

(

DA(B) + 2
0 + 6

)

DA(C ) = min

(

DA(D) + 1
0 + 8

)

DA(B) = 0 + 3

DA(A) = 0
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Raw example (Bellman algorithm)

•
A

•
B

•
C

•
D

•
E

•
F

3

8

6

2

6

1

1

7

2

DA(F) = min

(

DA(D) + 7
DA(E) + 2

)

DA(E) = min

(

DA(C ) + 1
3 + 6

)

DA(D) = min

(

3 + 2
0 + 6

)

DA(C ) = min

(

DA(D) + 1
0 + 8

)

DA(B) = 3

DA(A) = 0
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Raw example (Bellman algorithm)

•
A

•
B

•
C

•
D

•
E

•
F

3

8

6

2

6

1

1

7

2

DA(F) = min

(

5 + 7
DA(E) + 2

)
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0 + 6

)
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DA(B) = 3

DA(A) = 0
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Raw example (Bellman algorithm)
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D
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E

•
F

3
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1
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2

DA(F) = min

(

DA(D) + v(D, F)
DA(E) + v(E , F)

)

= 9

DA(E) = min

(

DA(C ) + v(C , E)
DA(B) + v(B, E)

)

= 7

DA(D) = min

(

DA(B) + v(B, D)
DA(A) + v(A, D)

)

= 5

DA(C ) = min

(

DA(D) + v(D, C )
DA(A) + v(A, C )

)

= 6

DA(B) = v(A, B)

DA(A) = 0
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Bellman algorithm

1: Initially F(x0) = 0 ; ∀y 6= x0,F(y) = +∞
2: for k from 1 to N − 1

3: for all vertex y

4: F ′(y) = min(F(z) + l(z, y); z ∈ P(y))

5: F = F ′

Shortest path to all vertices

Non-absorbent cycles are possible

Reversible

Complexity O(n2)
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Outline

3 Flow problems

Definition

Ford-Fulkerson algorithm
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Definition Ford-Fulkerson algorithm

Definition

Modelize a transport network and the constraints associated
with it

Road network

Power network

Water distribution network

. . .

Optimization of the flow

Search key elements
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Definition Ford-Fulkerson algorithm

Transport network

Definition

Is called a transport network an valued oriented graph G of n

vertices without loop, with two vertices x1 et xn such that for all
vertex xk of G, there is at least one path from x1 to xn through xk .

x1 is called source and xn sink of the graph

The value of the arc u, writed c(u) is the capacity of the arc

Is associated with each arc a flow ϕ, such that
0 ≤ ϕ(u) ≤ c(u)

The flows must respect the Kirchhoff’s law

Accordingly:

∑

(x1,xi)∈U

ϕ(x1, xi) =
∑

(xj ,xn)∈U

ϕ(xj , xn)
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Flow problems

•
S

•
A

•
B

•
C

•
D

•
E

•
F

•
G

•
P
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[5]
5
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[50
]
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[2
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15 [15]

15

[30]30
[30]

5
[20]

10

∑

(x1,xi)∈U

c(x1, xi) = 75 ;
∑

(xj ,xn)∈U

c(xj , xn) = 65 ; ϕ = 55

Is this flow optimal? Or can it be improved, and how?
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Outline

3 Flow problems

Definition

Ford-Fulkerson algorithm
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Ford-Fulkerson algorithm

Dectection of augmenting paths

Flow optimization in the augmenting paths

Definition

An augmenting path is an elementary path from x1 to xn wherein
no direct arc is saturated, and all the indirect arcs have a strictly
positive flow.

(xa, xb) is a direct arc if (xa, xb) is an arc of the graph

(xa, xb) is a indirect arc if (xb, xa) is an arc of the graph

An arc is saturated if c(u) = ϕ(u)
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Ford-Fulkerson algorithm

Dectection of an augmenting path

1: source labeled “+”, others vertex unlabeled

2: while an arc (x, y) satisfies one of the two conditions

3: x is labeled, y is unlabeled and (x, y) is unsaturated:
label « +x » the vertex y

4: x is unlabeled, y is labeled and ϕ(x, y) is not null:
label « -y » the vertex x

5: if the sink is labeled, the current flow can be improved by the
augmenting paths found by going back to the source with the
labels

6: if the sink remains unlabeled, the current flow is optimal
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Ford-Fulkerson algorithm

Increase the flow in the augmenting path

1: δ+ = min {c(u)− ϕ(u)} where u is a direct arc of C

2: δ− = min {ϕ(u)} where u is an indirect arc of C

3: δ = min {δ+; δ−}

4: for all direct arc u of C : ϕu ← ϕu + δ

5: for all indirect arc u of C : ϕu ← ϕu − δ

δ > 0, from the definition of the augmenting path
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Ford-Fulkerson algorithm: Example
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Dectection of an augmenting path
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Ford-Fulkerson algorithm: Example

•
S

•
A

•
B

•
C

•
D

•
E

•
F

•
G

•
P

[3
0]

20

[20]

10
[25]

25

[10]
10

[15]

10

[30]

5

[5]

5

[50]

25

[50
]

20

[2
5]

15 [15]

15

[30]30

[30]

5
[20]

10

+

+S

+A

-F
-D

+G

Augmenting path (S , A, F , D, G, P)
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Ford-Fulkerson algorithm: Example
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Augmenting path (S , A, F , D, G, P): δ = 5
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Ford-Fulkerson algorithm: Example
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No augmenting path remaining, the flow is maximal: δ = 60
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Ford-Fulkerson algorithm: Example
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No augmenting path remaining, the flow is maximal: δ = 60

Detection of the minimal cut
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Max-flot/min-cut theorem

Definition

The maximum flow from source to sink is equal to the minimum
capacity that has to be removed from the graph to nullify the flow
able to go from the source to the sink.

The minimum cut separates the graph into tw sets of vertices,
including:

1 The removal of intermediate arcs nullifies the flow

2 The sum of capacities of these arcs is minimal

This sum of capacities is equal to the maximum flot of the
graph
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Definition Ford-Fulkerson algorithm

Flow problems

Ford-Fulkerson algorithm

Getting a flow with a maximum value

Minimum cut

Proof of optimality

Many other models

Maximum flow at minimal cost

Cuts

Assignment problems

. . .
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Outline

4 The trees

Definitions

Application examples
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Definitions

Definition

A tree is a connected graph without cycle.

Definition

An arborescence or rooted tree is in an oriented graph, un tree
with a vertice root for which there is a single path to any other
vertex.

Necessarily, the root can not admit predecessor and is unique
(no cycle in the graph)

Attention !

In Computer Science, the term tree is commonly used to describe
an arborescence!
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Outline

4 The trees

Definitions

Application examples
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Application examples

Optimal trees

Network routing optimization

Transport programs

Organization between multiple sources and destinations

Unlimited flow but limited cost

Tree search

“Branch and bound” algorithms

Optimal search of scheduling solution
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Optimal trees

What tree from the graph minimizes the value of the edges?

•
A

•
B

•
C

•
D

•
E

•
F

•
G
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5 31
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3

64

5

3

34

Using a greedy algorithm
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Optimal trees

•
A

•
B

•
C

•
D

•
E

•
F

•
G

4

3

5 31

2

3

64
5

3

34

1: while possible, do

2: select the arc with the smallest possible valuation, whose
the two ends are not all selected

3: select the ends of the arc

4: si multiple disconnected components

5: start again at the hypergraph

Damien Leprovost Graph Theory in Operational Research 57



Introduction Algorithmics Flow Trees

Definitions Application examples

Optimal trees
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1: while possible, do

2: select the arc with the smallest possible valuation, whose
the two ends are not all selected

3: select the ends of the arc

4: si multiple disconnected components

5: start again at the hypergraph
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Optimal trees

•
A

•
B

•
C

•
D

•
E

•
F

•
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31
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1: while possible, do

2: select the arc with the smallest possible valuation, whose
the two ends are not all selected

3: select the ends of the arc

4: si multiple disconnected components

5: start again at the hypergraph
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